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Summary
Missing data are almost always a problem in longitudinal research. Item non-response, differential
attrition, failure to obtain measurements at equal time intervals, and unbalanced panel designs used to be
difficult to analyze at best and remain a threat to the validity of a study. A related technical problem,
customarily given little importance but nevertheless strongly related to validity threats, is that most
multivariate methods require complete data.

Incomplete data are often dealt with by listwise or pairwise deletion methods, which omit entire records,
or pairs of variables, with missing values. Sometimes a researcher will substitute sample means for the
missing values. All three approaches aim to fix up the data so that they can be analyzed by methods
designed for complete data but are ad hoc and have little theoretical justification.

The method offull-information maximum likelihood(FIML), in contrast, has long been known as a
theory-based approach to the treatment of missing data. FIML assumes multivariate normality, and
maximizes the likelihood of the model given the observed data. The theoretical advantages of this full-
information method are widely recognized, and it is now implemented in the Amos and Mx structural
equation modeling programs.

Unfortunately, theory has not had much influence on practice in the treatment of missing data. In part, the
under-utilization of maximum likelihood estimation in the presence of missing data may be due to the
unavailability of the method as a standard option in packaged data- analysis programs. There may also
exist a (mistaken) belief that the benefits of using maximum likelihood (ML) estimation rather than
conventional missing-data techniques will in practice be small.

This paper presents several examples of time-structured and multi-group problems demonstrating the ease
of FIML and its greater statistical efficiency when compared to mean-imputation and listwise or pairwise
deletion methods. Model specifications for these problems and Visual Basic code used in simulations are
available on the World Wide Web at the locations
http://www.mpib-berlin.mpg.de/research_resources/index.html and
http://www.smallwaters.com/books/mpi_modeling_code.html.

Current practice in the treatment of missing data
The most commonly practiced methods for structural equation modeling (SEM) with missing data apply
complete-data ML estimation to covariance matrices that have been somehow corrected. Such corrections
can be

(a) listwise deletion(LD), which excludes from the calculations all records with missing values on any of
the variables,
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(b) pairwise deletion(PD), by which each sample covariance between two variables is computed from
pairwise-complete data, excluding cases with missing values on one or both of the variables, or

(c) mean-imputation(MI) which replaces the missing values of a variable by the mean of its observed
values.

Brown (1983) studied LD, PD, MI and FIML methods by Monte-Carlo simulation in the factor analysis
context, Brown (1994) studied the performance of LD, PD and MI by Monte-Carlo simulation in the
context of structural equation modeling, and Little and Rubin (1987) reviewed all four methods in the
general multivariate case. All three studies are critical of mean-imputation and listwise and pairwise
deletion methods, citing biased and/or inefficient estimates as well as the increased potential of obtaining
indefinite sample covariance matrices. Brown (1983) qualifies his comments about LD, PD, and MI with
respect to frequency and type of the missing data.

Model-based imputation of missing values is well known in the statistical literature but rarely used in
structural equation modeling (Kim and Curry, 1977; Roth, 1994). In particular, the EM algorithm
(Dempster, Laird and Rubin, 1977), which implements the FIML approach by repeated imputation-
estimation cycles, has recently been discussed as a method for estimating means and covariance matrices
from incomplete data (Graham,et al., 1997; Graham and Hofer, 2000; Rovine, 1994; Verleye, 1996).
However, the EM algorithm has, to my knowledge, not been incorporated in a generally available
computer program for structural equation modeling.

Maximum likelihood estimation with incomplete data
The principles of ML estimation with incomplete data are well known (Hartley and Hocking, 1971;
Dempster, Laird and Rubin, 1977; Little and Rubin, 1987, 1989; Rubin, 1976; Wilks, 1932). Allison
(1987) and Muthén, Kaplan and Hollis (1987) show how the method applies to structural equation
modeling. Unfortunately, their approaches are only practical when the data have just a few distinct
patterns of missing data. They also require an exceptionally high level of technical expertise in the use of
particular SEM programs. At present, ML estimation with missing data is a standard option in at least two
structural equation modeling programs, Amos (Arbuckle, 1995) and Mx (Neale, 1994). Both maximize
the case wise likelihood of the observed data, computed by minimizing the function

where y i m, is the observed (ormeasured) portion of the data vector for casei, and µµµµ i m, and ΣΣΣΣ i mm, are the

mean vector and covariance matrix parameters but with only the rows and columns corresponding to the
observed portions of the data vector for casei. Thus, the Amos and Mx programs are not limited by the
number of missing-data patterns, and do not require the user to take elaborate steps to accommodate
missing data.
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Numeric example

Consider the data set:

There are three variables (V1 - V3) and seven cases (1-7). Four of the possible 21 observations are
missing, as indicated by a ‘—’ symbol. There are four different missingness patterns.

Possible alternatives for estimating means, variances and covariances from the incomplete data set are

• Listwise deletion:

All cases with missing observations are dropped from the computations. The complete-data formulae
are then applied to the complete cases (here: cases 1,2, and 5). The estimates are:

In this example, the LD method discards the records of four of the seven cases from calculations.
Obviously, LD does not make efficient use of the observed data.

• Pairwise deletion:

For each variable, PD computes mean and variance estimates from the univariate complete data. For
each pair of variables, PD calculates the covariance estimates from all cases with complete
observations on both variables; for instance, the covariance estimate for variables V1 and V2 would
be based on cases 1, 2, 4 and 5:

PD apparently uses more information from the data and should thus provide more efficient method
than LD. On the other hand, analysis of PD covariance matrices presents some known statistical
problems that are often overlooked. For once, each entry of such a matrix can be based on a different
sample size, and this possibility imposes considerable complications on deriving the joint statistical
distribution of the entries of the covariance matrix. In particular, the joint distribution of the elements
of a PD covariance matrix cannot usually be considered Wishart1, even when the matrix is computed
from multinormal data. As a conseqence, it is not clear how the fit of a model to a PD covariance
matrix can be statistically evaluated . A second, often more obvious issue is that the elements of the

Case V1 V2 V3

1 13 23 21

2 14 22 17

3 15 — 11

4 16 18 —

5 17 17 12

6 — 20 8

7 — 20 15

cov V1 V2 V3

V1 4.33

V2 -6.67 10.33

V3 -9.17 13.83 20.33

mean 14.67 20.67 16.67

cov V1 V2 V3

V1 2.50

V2 -5.33 5.20

V3 -6.58 7.95 21.60

mean 15.00 20.00 14.00
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covariance matrix are estimated not just from different sample sizes but more generally from different
portions of the data set, and this can lead to inconsistencies. For instance, the value of -5.33 for
cov(V1,V2) corresponds to a correlation of r = -1.48, which is an inadmissible value. PD-based
sample covariance matrices are a common source of indefiniteness problems in structural equation
modeling (Wothke, 1993).

• Mean imputation:

Each missing value is replaced with the mean observed value of the same variable. In other words, MI
is an attempt to make the raw data matrix complete. Afterwards means and covariances can be
calculated as if from complete data:

MI yields at the same sample means as PD. Since MI’s missing-data replacements happen to be the
PD means, this should hardly be surprising. The variance estimates under MI are clearly smaller than
those obtained under PD. This is a function of the MI algorithm: Brown (1994) and Little and Rubin
(1987) point out that variance estimates under MI are generally negatively biased. The covariance
estimates are also different from either LD or PD. Depending on the pattern of missing data, MI
covariance estimates may be systematically larger or systematically smaller than those obtained by
LD or PD.

On the positive side, MI does not share the indefiniteness problems encountered under PD:
Covariance matrices computed under MI must be positive definite or semi-definite.

• Full-information maximum likelihood:

The FIML estimates of the means and covariances are obtained by maximizing (1) with respect to
first and second moments:

This FIML estimate uses all the information of the observed data, including information about the
mean and variance of missing portions of a variable, given the observed portion(s) of other variables.
Even though the indefiniteness problem observed with the PD estimate may also occur with FIML
estimation, it does not seem to be as frequent a problem. In the present case, the FIML covariance
matrix estimate is positive definite.

Obviously, the four methods of computing means and covariance matrices from incomplete data can
produce radically different solutions, even when the exact same data are used. These method differences
depend on several factors, including the proportion of data missing and the type of process(es) causing the
incompleteness of the data.

Cov V1 V2 V3

V1 1.67

V2 -2.67 4.33

V3 -3.50 5.50 18.00

Mean 15.00 20.00 14.00

cov V1 V2 V3

V1 1.44

V2 -2.29 3.73

V3 -3.59 6.14 19.48

mean 14.98 19.98 13.31
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Missing-data mechanisms
In order to state the advantages of ML estimation over MI, PD, and LD, it is necessary to consider the
mechanisms by which missing data can arise. Rubin (1976) and Little and Rubin (1987) distinguish the
processes that generate the missing data with respect to the information they provide about the
unobserved data. Missing values of a random variableY can bemissing completely at random(MCAR),
missing at random(MAR), or nonignorable. Under an MCAR process, the fact that a variable’s data are
observed or missing is not thought to affect its distribution, i.e.,

In this paper, MCAR is the most restrictive assumption considered for missing-data processes. MCAR
can sometimes be established in behavioral and social surveys by randomly assigning test booklets or
blocks of survey questions to different respondents.

MAR is a more relaxed condition, assuming only that missing and observed distributions ofY are
identical, conditional on a set of predictor or stratifying variablesX, i.e.,

One way to establish MAR processes is to include completely observed variablesX that are highly
predictive ofY. For instance, inasmuch as past behavior is an effective predictor of future behavior, initial
(complete) measurement(s) in longitudinal designs can be a good choice ofX.

The performance of the four methods under different types of missing data processes is summarized by
Little and Schenker (1995). For data that are missing completely at random, PD and LD estimates are
consistent, although not efficient. MI is consistent in the first moments, but yields biased variance and
covariance estimates. If the data are only MAR, then PD and LD estimates also may yield biased results.
ML estimates, on the other hand, are already both consistent and efficient when the data are only MAR.
In addition, some authors have suggested that ML estimates will tend to show less bias than estimates
based on MI, LD or PD, even when the data deviate from MAR (Little and Rubin, 1989; Muthén, Kaplan
and Hollis, 1987). As final shortcomings, PD does not provide standard errors of parameter estimates or
tests of model fit, while MI can produce standard error estimates and fit statistics that are far too
optimistic.

Application: Growth curve modeling

Simulation 1: MCAR data

To demonstrate the efficiency of ML estimation relative to MI, LD, and PD for a single, fairly typical
estimation problem with MCAR data, a small Monte-Carlo simulation was undertaken. The variable
names and parameter values are taken from a reanalysis of STEP science data collected by Hilton and
Beaton (1971,pp.343–344). To keep things simple, the Monte-Carlo simulation uses a multivariate
normal distribution, with structural parameters provided by the path model shown in Figure 1. Suppose
that the STEP science test was administered to the same students on four occasions—in 1961, 1963, 1965,
and 1967. The substantive interest is to gauge the growth of the science scores over the four test
occasions. However, this task is somewhat complicated by the measurement error in the test scores.

P Y y P Y y( ) ( )missing observed=

P Y y P Y y( ) ( )missing, observed,X X=
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The model of Figure 1 is essentially the MANOVA approach to growth-curve modeling (Bock, 1975).
Each test score is composed of a constant term, a slope, and a residual. The constant and slope terms are
modeled as correlated random components, summarizing the individual differences of both initial level
and subsequent improvement of the students' science knowledge. The constant term, with mean 254.92
and variance 98.98, is connected to the observed variables with fixed weights of unity. In addition, the
constant term makes theonly systematic contribution to the 1961 science knowledge test scores. Thus, the
mean (254.92) of the constant term gives the mean of the 1961 scores in science knowledge, while its
variance (98.98) describes the systematic dispersion of 1961 science knowledge among the group of
students. The residual variance of 46.71 provides an estimate of the measurement error of the STEP
science test.

The four paths pointing from the slope term to the four observed variables have their coefficients fixed to
a linear trend (0, 2, 4, 6). These fixed coefficients reflect the number of years since the first measurement
(in 1961). Hence, the slope mean of 4.38 shows the average growth in science scores per year, and its
variance of 0.80 quantifies the inter-individual variation of the yearly slope. Constant and slope have
somewhat of a negative correlation (r = -0.21), implying that students who start out with high 1961 scores
have smaller subsequent gains than students with lower initial scores.

Figure 1: Parameters of a linear growth model (from STEP Science Test,
students with high school educated fathers)

constant

254.92, 98.98
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0

e1

0, 46.71
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The Monte-Carlo simulation employed 400 random data sets of sample size 500, generated from a
multivariate normal distribution with the parameters of Figure 1. The four variables had some of their
values deleted completely at random. Missing data probabilities were 0% (none) for 1961, 10% for 1963,
20% for 1965, and 30% for 1967. Multivariate normal quasi-random numbers were generated by the
RANLIB.C routines (Brown and Lovato, 1994) implementing the algorithms by L’Ecuyer and Côté
(1991) and Ahrens and Dieter (1973).

Realized missing data rates varied somewhat within samples, because the MCAR process was executed
independently on each individual observed value. The growth model of Figure 1 was fitted to each
Monte-Carlo sample using MI, ML, LD, and PD methods. Altogether, the simulation comprised 1600
attempts to fit the model2. This task was automated by calling the open programming AmosEngine
interface from a Visual Basic routine.

The performance of a single estimation method (say, ML) was assessed in the following way: First, the
method was applied to estimate the model for each of 400 Monte-Carlo samples, then the accuracy of the
estimates was judged by comparing them to the bootstrap population parameters in Figure 1. The question
is which, if any, of the four methods reproduces the parameter values most closely.

Figure 2: Distribution of v(constant) estimates, MCAR with FIML. Var = 74.13
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Figure 3: Distribution of v(constant) estimates, MCAR with MI. Var = 73.62

Figure 4: Distribution of v(constant) estimates, MCAR with PD. Var = 78.67

Figure 5: Distribution of v(constant) estimates, MCAR with LD. Var = 133.17

Figures 2–5 display the distributions of the variance estimates for the constant term, with the parameter
value of 98.98 indicated by a vertical dotted line. With the exception of the MI estimate, which is biased
downward by three percent, the distributions are centered on the parameter value within the margins of
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sampling error. Estimation bias for this parameter thus appears to be negligible under the FIML, PD and
LD methods, although the data indicate some difference in precision (or efficiency) of estimation. The
relative sampling variance can be used to estimate relative gains in efficiency. Under asymptotic theory,
the sampling variances of means, regression coefficients and variances are inversely related to sample
size Kendal and Stuart, 1977,p. 258). Thus, when estimating the variance of the constant term, switching
from FIML to LD nearly doubles its sampling variance (1.80 = 133.17/74.13). According to this
asymptotic rule, the sample size for LD would have to be increased by approximately 80% (i.e., to N =
900) in order to achieve the degree of precision provided by FIML at N=500.

Table 1: Model estimates under simulated MCAR

It has to be stressed that this relative figure of 80% is specific to a single parameter, a single sample size,
and a particular choice of missing-data rates. Table 1 shows means and empirical standard errors for all
six parameters in the model. These statistics are affected by an undetermined amount of sampling error.
Nevertheless, some broad trends are apparent. As expected with MCAR, the FIML, PD, and LD estimates
are all unbiased. The MI method, while unbiased in means, produces notably biased variance and
covariance estimates. Among the unbiased estimation methods, FIML yields the most efficient
estimates—standard errors generally increase as one moves from FIML estimation to PD, and then to LD.
The size of the overall change in precision is difficult to gauge, however, as it depends on characteristics
of the model, complete-case population mean and covariance structure, sample size, and frequency of
missing data. Simulation work by Arbuckle (1996), Grahamet al. (2000) and Verleye (1996) suggests
that the relative efficiency of FIML increases as the missing data rate increases.

Simulation 2: A Case of MAR data
A second Monte-Carlo simulation3 was performed to illustrate the benefits of ML with data that are MAR
but not MCAR. The structural model of Figure 1 was used again for this simulation. The sample size was
500, except that the MAR process was set up to simulate a selective drop-out mechanism in three stages:
First, 80% of the cases with a 1961 knowledge score of less than 246 had their 1963-1967 measurements
deleted. Second, of the remaining cases, 80% of those with a 1963 score of less than 255 had both their
1965 and 1967 scores set to missing. Finally, 80% of the remaining cases with 1965 scores of less than
263 had their 1967 values set to missing. The realized missing data rates were 0% in 1961, 16–20% in
1963, 25–33% in 1965, and 30–40% in 1967, with differences in these proportions due to sampling
variation.

Estimation constant slope
Type Statistic mean var cov mean var ve

FIML Mean 254.95 98.99 -1.91 4.37 .80 46.56

s.e. .51 8.61 1.21 .09 .28 2.47

MI Mean 254.95 96.00 -5.74 4.37 .73 51.43

s.e. .51 8.58 1.26 .10 .24 2.36

PD Mean 254.95 99.24 -1.93 4.37 .80 46.71

s.e. .51 8.87 1.30 .10 .28 2.55

LD Mean 254.94 99.53 -2.00 4.37 .81 46.59

s.e. .76 11.54 1.54 .11 .32 2.90

Parameter value 254.92 98.98 -1.88 4.38 .80 46.71
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This type of MAR process emulates the situation in which a person participates in a study for some time
and then drops out after showing a low score and encountering other, presumably random, conditions. It
is particularly easy to see how MI and LD would lead to biased estimates in this situation, as selectively
removing records with low scores or substituting the means of the remaining higher scores would affect
both means and covariances of the remaining sample. The effect of the missing-data pattern on PD is not
so clear-cut. We have already observed the superior efficiency of FIML estimates in the MCAR
simulation where PD and LD estimates were known to be unbiased. By contrast, because the present data
are only MAR, estimation bias is now of central concern with all estimates.

Figure 6: Distribution of v(constant) estimates, MAR with FIML. Var = 77.62

Figure 7: Distribution of v(constant) estimates, MAR with MI. Var = 46.24
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Figure 8: Distribution of v(constant) estimates, MAR with PD. Var = 70.22

Figure 9: Distribution of v(constant) estimates, MAR with LD. Var = 39.69

Examples of method-specific estimation bias with MAR data are shown in Figures 6–9. While the FIML
variance estimate of the constant is neatly centered at the parameter value—although perhaps with a
somewhat large sampling variance—the MI, PD, and LD estimates all show negative bias. PD estimates
are biased downwards by a moderate degree (approximately 7.5%), but the sampling distributions of MI
and LD estimates do not even appear to include the parameter value. Particularly, the LD estimates are all
located below 70. Note that the sampling variance under MI and LD is at least 40% smaller than under
FIML. One might summarize that MI and LD yield very precise estimates of exactly the wrong
parameter.
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Table 2: Model estimates under simulated MAR

Table 2 shows the means and standard errors of the six parameter estimates computed by the four
estimation methods averaged across 400 samples of size 500. For almost every parameter, FIML provides
the estimate with the least bias. Due to the missing data process being MAR instead of MCAR, the MI,
PD and LD methods are not only biased in variances and covariances but also in the mean parameters of
the constant and slope terms. For several parameters, estimation is dramatically better with FIML than
with PD and LD.

Summary

It is impossible to put a single figure on the gain in accuracy of estimation to be had by abandoning MI,
PD, and LD in favor of FIML. It is hard to imagine a situation, though, in which FIML would yield worse
results than MI, PD, or LD. The advantage of FIML depends on the missing-data rate, the covariance
structure of the data and size of the sample, and it differs from one parameter to another. Nevertheless, the
two simulations demonstrate that FIML can be superior to PD, and superior to MI and LD by a wide
margin.

Estimation Constant slope
Type Statistic mean var cov mean var ve

FIML mean 254.95 98.53 -1.93 4.38 .80 46.53

s.e. .53 8.81 1.49 .11 .30 2.54

MI mean 255.33 78.57 -8.62 5.13 1.59 51.24

s.e. .51 6.80 1.19 .11 .24 2.17

PD mean 255.33 91.58 -5.87 5.13 1.22 50.75

s.e. .51 8.38 1.47 .11 .34 2.69

LD mean 260.57 46.93 -.79 4.24 .80 42.02

s.e. .47 6.30 1.00 .09 .26 2.38

Parameter value 254.92 98.98 -1.88 4.38 .80 46.71



LONGITUDINAL AND MULTIGROUP MODELING WITH MISSING DATA 13

Application: Autoregressive Process
A series of time-dependent autoregression and Markov models (Jöreskog, 1977) demonstrates the ease of
analyzing incomplete longitudinal data, testing all models simultaneously against an artificial sample.
James Arbuckle first presented this example at the 1996 meetings of the American Educational Research
Association. The Amos Graphics specification of the most general model appears in Figure 10. There are
four time-dependent variables, Q1, Q2, Q3, and Q4, which can be thought of as four consecutive
measurements of the same variable or quantity. Each observed variables is modeled as a linear function of
the earlier variables, plus a random shock or residual term.

The three-equation model is just-identified. It is has zero degrees of freedom and cannot be rejected by a
global test of fit. Note that the path diagram shows nine parameters with the distinct labels b12, b13, b14,
b23, b24, b34, v2, v3, and v4. These labels may be used in constraints defining submodels thatcanbe
tested against the data. Three submodels might be considered interesting in this type of longitudinal
application:

1. Saturated model. This is the model of Figure 10 without any constraints. It is a descriptive account
of a four-occasion longitudinal design. The measurement at a given occasion is a linear function of
the preceding measurements. While the model itself cannot be tested, the parameter estimates and
their approximate standard errors may be of exploratory value.

2. Markov model. In a Markov model, the values of a time-dependent variable are dependent only on
the values of the previous occasion. In other words, there are neither lag-2 nor lag-3 effects. A (linear)
Markov model can be defined by the three constraints:

b13 = b14 = b24 = 0.

Assuming normality, model fit can be assessed by aχ2 test with three degrees of freedom.

Figure 10: Time-dependent process—model specificationFigure 10: Time-dependent process—model specification
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3. Stationary Markov model. A Markov model with time-invariant prediction equations is called
stationary. Ignoring intercept terms, two equality constraints are required to make the regression
weights stationary:

b12 = b23 = b34

and two additional constraints are needed to render the residual variance terms stationary as well:

v2 = v3 = v4.

The stationary Markov model can be tested under normality by theχ2 fit-statistic with seven degrees
of freedom. Incremental change of fit from the general Markov model can be assessed by the
likelihood ratioχ2 test with four degrees of freedom.

Table 3: Input data for autoregressive process

The input data for estimating the three models may look like the file fragment shown in Table 3. Amos
handles several popular data formats with different conventions for coding missing values. The comma-
delimited format of Table 3 begins with a line ofp variable names, followed byN lines of p data entries
each, separated byp-1 commas. Missing data appear as blank entries. For instance, case 3 is missing the
value of Q4, case 37 is missing Q1, Q3 and Q4, and case 39 is missing Q1.

When Amos encounters missing values among the modeled data, the program switches automatically
from its default moment-based maximum likelihood algorithm to the case-wise formula (1). The Amos
user must request estimation of means and intercepts because, with incomplete data, their contribution to
the likelihood is no longer independent of variance and covariance terms. The most general model is
specified as the input-path diagram of Figure 10. The three submodels are defined within the Amos 4
Model Manager.

Case, Q1, Q2, Q3, Q4
1, 19, 14, 15, 17
2, 19, 16, 17,
3, 18, 20, 18, 17

... many more similar records ...

37, , 7, ,
38, 12, 12, 18, 17
39, , 19, 15, 15
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Table 4: Model fit

Table 4 presents a short list of the more than twenty4 fit statistics provided by Amos 4 with incomplete
data. To evaluate the fit of a working model in the missing-data case, Amos must fit both working and
saturated models. Assuming both models converge to global solutions5, theχ2 fit-statistic is obtained as
the difference in function of the log likelihood (1) values between the working and saturated models. The
(positive) difference in number of parameters between models gives the associated degrees of freedom.
Theχ2 fit-statistics appear in the CMIN column of Table 4. The first three lines display the fit of the
specified Saturated, Markov and Stationary Markov submodels. With our artificial data, the fit of the
Markov model would appear quite reasonable (χ2 =3.8, df=3; p=0.28), while the largeχ2 of the
Stationary Markov model (χ2 =31.4, df=7; p=0.00) would indicate misspecification of that model. The
bottom panel of Table 4 shows the Markov model with the smallest AIC and BCC statistics—smaller
even than the Saturated model. According to Akaike (1987), the model with the smallest AIC has the best
fit. Aikaike’s rule would pick the Markov model over either Stationary Markov or Saturated models.

Table 5: Incremental fit statistics

Because the three models are hierarchically nested, their relative discrepancies can be tested by the
likelihood ratio chi-square statistic. Table 5 summarizes these incremental fit statistics. Comparing the
Markov and Stationary Markov models is particularly interesting. The largeχ2 of 27.542 (df = 4) is a

Summary of models
-----------------

Model NPAR CMIN DF P CMIN/DF
---------------- ---- --------- -- --------- ---------

Saturated 14 0.000 0
Markov 11 3.822 3 0.281 1.274

Stationary Markov 7 31.364 7 0.000 4.481
Saturated model 14 0.000 0

Null model 8 424.405 6 0.000 70.734

...

Model AIC BCC BIC CAIC
---------------- ---------- ---------- ---------- ----------

Saturated 28.000 32.242
Markov 25.822 29.155

Stationary Markov 45.364 47.485
Saturated model 28.000 32.242

Null model 440.405 442.829

Model Comparisons
-----------------

Assuming model Saturated to be correct:
NFI IFI RFI TLI

DF CMIN P Delta-1 Delta-2 rho-1 rho-2
-- ---- ----- ------- ------- ----- -----

Markov 3 3.822 0.281 0.009 0.009
Stationary Markov 7 31.364 0.000 0.074 0.074

Assuming model Markov to be correct:
NFI IFI RFI TLI

DF CMIN P Delta-1 Delta-2 rho-1 rho-2
-- ---- ----- ------- ------- ----- -----

Stationary Markov 4 27.542 0.000 0.065 0.065 0.045 0.046
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strong rejection of the stationarity assumption: The residual variances and lag-1 regression weights do
vary over time.

Table 6: Parameter estimates of the Markov model

Parameter estimates and approximate standard errors of the general Markov model appear in Table 6. The
standard errors are an implicit and convenient by-product of the FIML algorithm employed by Amos.
Their primary use is to gauge the likely ranges of the parameter estimates under replication. A common
rule of thumb (based on the asymptotic normality of the estimates) assumes a 95% confidence interval at
±2 standard errors from the estimate. According to this rule, the size of the lag-1 autoregression weights
appears to decline over time. In addition, the residual variances at occasions 2, 3 and 4 come out
heterogeneous. Both findings corroborate the earlier decision against the stationary Markov model.

Note the implied covariance matrix and mean vector at near the end of Table 6. These first and second
moments derive from the estimated parameters of the Markov model and are thus a function of the
observed data as well as the working model.

Summary

Model specification and estimation with missing data follows the same strategies as in the complete data
scenario. Except for specifying a missing data code, the FIML implementation of the Amos and Mx
programs does not complicate the model setup. In return, FIML delivers parameter estimates unbiased
under MAR and standard errors estimates based on asymptotic normal theory. For model testing, fitχ2

Regression Weights: Estimate S.E. C.R. Label
------------------- -------- ------- ------- -------

Q2 <---- Q1 0.857 0.137 6.261 b12
Q3 <---- Q2 0.452 0.152 2.972 b23
Q4 <---- Q3 0.167 0.072 2.311 b34

Means: Estimate S.E. C.R. Label
------ -------- ------- ------- -------

Q1 15.059 0.636 23.692

Intercepts: Estimate S.E. C.R. Label
----------- -------- ------- ------- -------

Q2 2.475 2.126 1.164
Q3 7.714 2.433 3.170
Q4 13.584 1.100 12.349

Variances: Estimate S.E. C.R. Label
---------- -------- ------- ------- -------

Q1 14.576 3.478 4.191
e2 9.279 2.287 4.057 v2
e3 14.128 3.632 3.890 v3
e4 2.229 0.637 3.498 v4

Implied (for all variables) Covariances

Q1 Q2 Q3 Q4
-------- -------- -------- --------

Q1 14.576
Q2 12.490 19.982
Q3 5.639 9.022 18.202
Q4 0.941 1.505 3.037 2.736

...

Implied (for all variables) Means

Q1 Q2 Q3 Q4
-------- -------- -------- --------

15.059 15.380 14.658 16.030
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cov FAOC_t1 FAOC_t2 FAED_t1 FAED_t2

FAOC_t1 217.27

FAOC_t2 — —

FAED_t1 25.57 — 16.16

FAED_t2 — — — —

mean 16.98 — 6.83 —

statistics are usually available whenever the saturated model has a FIML solution. In addition, when
competing models are hierarchically nested, the likelihood ratio chi-square test provides a powerful tool
for detecting sources of misfit.

Application: Multiple groups with missing data
The first practical maximum likelihood implementation of incomplete data modeling in the SEM
framework used a multiple group approach (Allison, 1987). The example in this section is based on one
presented in Allison’s original paper but has been modified to show how latent variables are conceptually
the same as missing data (cf., Dempster, Laird and Rubin, 1977).

Bielby, Hauser and Featherman (1977) studied the relationship between indicators of occupational status
and educational attainment in a sample of 2020 African-American fathers. Using a single indicator for
each construct, Bielbyet al. estimated the correlation between occupational status and educational
attainment asr = 0.43 for the entire sample. Realizing that measurement error and temporal instability of
their single indicators would likely attenuate the correlation estimate, Bielbyet al. re-interviewed a
random subsample of 348 study participants approximately three weeks after the first interview. For this
sub-group, they obtained a second set of occupational status and educational attainment indicators that
can be used for estimating the size of the measurement error. The data were reported (Allison, 1987) as
two subsamples:

a) Bielbyet al. (1977) complete data (N = 348):

b) Bielby et al. (1977) incomplete data (N = 1672); unobserved means and (co-)variances indicated by
dashes:

The two-group factor model of Figures 11 and 12 proposes a simple way to separate stable (or systematic)
measurement components from measurement error and estimate the disattenuated correlation. Figure 11
shows the confirmatory factor model for the complete-data subsample. Father’s occupational status has
two observed indicators, FAOC_t1 and FAOC_t2, with independent error terms e1 and e2. Father’s
educational attainment has two observed indicators, FAED_t1 and FAED_t2, again with independent
error terms e3 and e4. The hypothetically error-free occupational status and educational attainment
variables are correlated. The model has 13 free parameters, all labeled: One factor covariance (cov_oe),
two factor variances (v_faoc and v_faed), two regression weights (b2 and b4), four intercepts (i1, i2, i3,
and i4), and four specific variance terms (v1, v2, v3, and v4).

cov FAOC_t1 FAOC_t2 FAED_t1 FAED_t2

FAOC_t1 180.90

FAOC_t2 126.77 217.56

FAED_t1 23.96 30.20 16.24

FAED_t2 22.86 30.47 14.36 15.13

mean 16.62 17.39 6.65 6.75



18 LONGITUDINAL AND MULTIGROUP MODELING WITH MISSING DATA

Figure 12 uses the same measurement model for the incomplete subsample, including parameter labels. In
Amos’s notation, two parameters that share the same label are automatically equal-valued. In other words,
using the same label for a parameter throughout all groups makes that parameter group-invariant. All
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Figure 12: Measurement model for the incomplete subsample
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Figure 11: Measurement model for the complete subsample
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corresponding free parameters in Figures 11 and 12 are shown with group-invariant labels, and all fixed
parameters have the same value in both groups. This means the entire model is group-invariant, and
implies that the missing data process is MCAR. The only difference is that the model in Figure 12
accommodates the missing variables. Placing FAOC_t2 and FAED_t2 in ellipses in the second group
declares these variables as latent or unobserved—in other words, missing.

The analysis estimates the disattenuated correlation between occupational status and educational
attainment asr = 0.623 (s.e. = 0.029). The overall fit of the two-group model is quite acceptable (χ2 = 7.8,
df = 6), supporting the implied assumption that the data are MCAR6. This estimate is quite different from
the correlation of 0.43 between the observed variables FAOC_t1 and FAED_t1.

Summary

Allison’s (1987) multi-group implementation can also be accommodated within Amos. The setup is
similar to other contemporary SEM programs, except that Amos permits additional simplifications. The
multi-group setup for missing data analysis involves these steps:

1. Draw a model for complete data and label all free parameters. Select mean-level analysis.

2. Turn the single group specification into a multi-group analysis, declaring one “group” for each pattern
of missing data. Issue Amos’sHeterogeneous Groupscommand. Connect each group with its data
file. TheHeterogeneous Groupscommand removes the necessity of having the same model and the
same variables in all groups; it also allows different groups to use different numbers of variables.

3. In each group’s path diagram, use theToggle Observed/Unobservedtool to mark the missing
variables as latent (or unobserved).

Allison’s multi-group approach may be regarded as an alternative to Amos’s case wise (default) FIML
estimation with incomplete data. There are some obvious tradeoffs to using Allison’s multi-group setups.
As mentioned previously, model specification by the multi-group approach is both more laborious and
only feasible with a small number of missing data patterns. On the other hand, all fit statistics,
modification indices and residual analyses normally available with complete data are provided when the
multi-group setup is employed. In addition, the group-specific means and variances of the exogenous
variables are under the modeler’s control, permitting detailed tests of MCAR, MAR and other
assumptions.

Discussion
Maximum likelihood (FIML) estimation with incomplete data is a feasible method, now available in the
Amos and Mx structural equation modeling programs. FIML is more efficient and less biased than
listwise and pairwise deletion and mean-imputation methods. In the case of MAR data, FIML can be
dramatically less biased than listwise deletion and mean-imputation methods. This is why FIML should
be the preferred method of treating missing data when the alternative is pairwise or listwise deletion or
mean-imputation.

Maximum likelihood’s lack of reliance on the MCAR requirement is a feature that remains to be fully
exploited. Unbiasedness under MAR and higher efficiency under MCAR make maximum likelihood the
method of choice in situation with incomplete multinormal data.

Feasible alternatives to the FIML approach of Amos and Mx are the EMCOV and NORM approaches
(Graham and Hofer, 2000) which use EM and data augmentation methods based on the saturated model
for imputing values of the missing data. The completed data matrices would subsequently be analyzed by
traditional SEM methods.

With the FIML approach of Amos and Mx, in contrast, it is not necessary either to impute values for
missing data or to estimate the population moments as a prerequisite to model fitting by ML. These are
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optional steps which—if performed at all—are best done after the model is fitted (see Appendix), not
before. Most structural modeling programs report estimates of population means, variances and
covariances, calculated from parameter estimates under the assumption of a correct model.

It should not be overlooked that structural modeling with the Amos program can also be used to solve
missing-data problems that arise in conventional analyses, such as regression with observed variables or
the simple estimation of means and variances.
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Appendix

Imputation of missing values

Let µµµµ∗ and ΣΣΣΣ∗ be the population means and covariances of all variables in the model, both measured and

unmeasured, and letÿµµµµ∗ and ÿΣΣΣΣ∗ be their estimates assuming a correct model. For an individual casei, let
the partitioned data vectoryi contain all unobserved and observed data of the model, with unobserved
variables ordered first:

( ) [ ]y y yi i i i p i i i q i u i mu u u m m m= =, , , , , , , ,1 2 1 2� � . (1)

The subvectorsy i u, and y i m, will be of different sizes for different missing-data patterns. Arranging the

values in ÿµµµµ∗ and ÿΣΣΣΣ ∗ in the same order as inyi yields the partitioned implied mean vector:

( )ÿ ÿ ÿ
, ,µµµµ µµµµ µµµµi i u i m= (2)

and covariance matrix:
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Under normality, the expectation of the missing data, conditional on the observed values, is estimated as:

( ) ( )E ÿ ÿ ÿ ÿ
, , , , , , ,y y yi u i m i u i um i mm i m i m= + −−µµµµ ΣΣΣΣ ΣΣΣΣ µµµµ1 , (4)

and their conditional covariance matrix as:

Cov( | ) ÿ ÿ ÿ ÿ
, , , , , ,y yi u i m i uu i um i mm i mu= − −ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ ΣΣΣΣ1 . (5)

These statistics can be used to impute the model-based means and confidence intervals of the missing
data, given the observed portion of the data. With complete data, using (4) produces the usual regression
estimates of factor scores provided by many structural modeling programs. Stochastic regression
imputation (Little and Rubin, 1989) and multiple imputation (Little and Rubin, 1987) are important
variants of this imputation method.
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Footnotes

1 When complete data vectors are sampled from a multivariate normal population, the joint distribution of
the elements in the resulting sample covariance matrix follows a Wishart distribution (Johnson and Kotz,
1972).
2 In 25%-37% of these simulation runs, Amos indicated some convergence problems. However, this did not
seem to make a difference in results. Solutions from “converged” and “non-converged” runs were
statistically indistinguishable, thus all results from all simulations were included in the statistical reports.
3 Convergence problems were also encountered with the MAR simulation, but again they did not appear to
affect the overall results.
4 Some fit indices, such as the GFI and RMR, are defined only for complete data. Other fit indices,
including the BIC and CAIC, were devised only for single group analyses without mean structures. These
statistics do not apply to incomplete data, at least not in their current formulations.
5 Unless the number of observed variables becomes large relative to number of cases and observed data
rates, both working and saturated models usually converge to global maxima. Thisχ2 statistic can usually
be computed whenever the saturated model has a global solution.
6 The MAR assumption can be incorporated into the multi-group missing data approach by letting means
and covariances of the exogenous observed variables vary free across groups. Such a MAR analysis is
possible when missing data occur only among endogenous variables, but not exogenous ones.


